

Hutchison, M.T

CORUNDUM INCLUSIONS IN DIAMONDS -DISCRIMINATORY CRITERIA AND A CORUNDUM COMPOSITIONAL DATABASE

Mark T. Hutchison¹, Peter H. Nixon² and Simon L. Harley³

Presenting Author, Lunar and Planetary Laboratory, University of Arizona U.S.A. Present Address: RSES, ANU, Mills Road, Canberra ACT 0200 AUSTRALIA - mhutchis@lpl.arizona.edu ² School of Earth Sciences, University of Leeds, LS2 9JT, U.K. Grant Institute, University of Edinburgh, EH9 3JW, U.K.

٠

INTRODUCTION

THEORY

- Corundum contains sites appropriate for hosting HFS elements and transition metals
- Corundums contain quantities of trace elements measurable by ICPMS and SIMS These elements are fractionated in widely differing fashions in
- different mantle and crustal settings Trace elements could therefore provide a means of discriminating
- diamond-associated corundums from those grown in other settings Corundum is resistant to weathering
- Corundums empirically observed to be associated with diamond in many alluvial settings
- Juina, Brazil (Watt et al., 1994; Hutchison, 1997; Harte et. al., 1999; Hutchison et al., 2001)
- Corundum has potential as an exploration tool

OBSTACLES

- Published data on trace elements in corundums generally very sparse (Schreyer et al., 1981; Kerrich et al., 1987)
- Corundum is a very common mineral particularly in heavy mineral separates diamond associated corundums are likely to be in the minority even in diamondiferous settings

SOLUTIONS - CURRENT RESEARCH

- Expansion of database of ruby and white corundum inclusions from Juina
- First recorded occurrence of sapphire as inclusion in diamond.
- Collection of corundums for additional settings: granitic emplacement, amphibolite-facies, granulite-facies rocks, synthetic origins and from kimberlite drill cores Establishment of analytical methodology
- Establishment of compositional database
- Implementation of selection criteria for rapid EDS-type mineral identification

CORUNDUM INCLUSIONS IN DIAMOND

JUINA INCLUSIONS

- Samples from the Rio Vinte e Um and the Rio Cinta Larga and its tributaries the Rio Mutum, Igarapé Porção, Rio Juininha and Rio Juina-Mirim.
- Inclusions were recovered by fracturing in a purpose built steel anvil
- Three inclusions of ruby one 60 μ m grain being a composite with a high (10w(%) Al₂O₃ pyroxene, Fig. 1, within the same diamond as a syngenetic inclusion of ferropericlase ((Mg,Fe)O One 300 1 m intense blue sapphire inclusion
- Two white corundums

DEPTH OF ORIGIN

- Association of ruby, high alumina pyroxene and ferropericlase suggests an origin within the lower mantle of ~720 820 km depending on ambient temperature (Hutchison et al., 2001).
- White corundum and sapphire were not associated with other mineral grains hence their depth of origin unknown.
- However inclusion study and measurement of nitrogen characteristics (Hutchison et al., 1999) in run-of mine production diamonds are compatible with the majority of diamonds being of transition-zone and lower-mantle origin

ADDITIONAL SAMPLES

- White corundum from the Rockford s-type felsic granite, Tallapoosa County, Alabama (3640) Drummond et al. (1988) Light brown corundum from granite intruding felsite dyke, Sacatan Mountains AZ (12976) Larrabee (1969) Carmine corundums (PHN20(2)) recovered from kimberlite drill cores, Forte à la Corne, Canada- possible diamond provenance, unusual colouration and compositional zonation. Claret coloured corundums var. ruby associated with clinozoisite from Kenya (9997), Tanzania (PHN2) Puby, from bicherarde Protecracie, orthoamphibolites. Bamble

- from Kenya (9997), Tanzania (PHNz) Ruby from high-grade Proterozoic orthoamphibolites, Bamble Sector, Norway (1855) Nijland et al., (1993) High-grade granulite-facies hosted corundum from 800°C reaction zone (Osanai et al., 1996) associated with ultramafic intrusion (HIGO) Kyushu, Japan Metsomatised corundum (91-38) from garnet sillimanite phlogopite gneiss, Rauer Group (Harley, 1998) Ever generates from glavetane proteinth bich grade granuling
- Four samples from claystone protolith high grade granulites hosted in TTG orthogneisses / monzodioritic gneiss, Vestfold Hills, Antarctica Harley (1993); Snape and Harley (1996)

Fig. 1 Composite inclusion of ruby with high-Al pyroxene 60µm

ANALYTICAL METHODS

- Major and minor element concentrations by EPMA, Universities of Edinburgh and Arizona
- Homogeneous La₉Al₁₅XO₃₆ glass doped with twenty elements as 2000 ppm atomic manufactured using levitation characterised by laser ICPMS and EPMA for SIMS standardisation
- Absolute concentrations of twenty-one elements were measured by SIMS, Univ. Edinburgh for Juina samples with the exception of the small composite ruby, ASU for other samples - Al measured at mass 13.5
- Absolute concentrations of twenty five elements by laser ICPMS, ANU 23s burn-in time

RESULTS

- Sapphire characterized by low Cr relative to Fe and Ti.
- Red corundums dominated by relatively high Cr to Ti. White corundums have relatively high Ti and Cr.
- Corundums from similar geological settings show very similar compositions and are easily distinguishable from those of differing origin.
- Rubies from Norwegian, Tanzanian & Kenyan amphibolite-facies
- Rubies from Norwegian, Lanzanian & Kenyan ampinionite-factes rocks compositionally indistinguishable (Fig. 2) Corundums from metasomatised zones associated with contact metamorphism from Arizona and Japan are very similar -characterised by unusually high abundance of mobile Y, Zr and Nb

Fig 2. Concentrations of trace elements from Norwegian, Tanzanian & Kenvan amphibolite-facies rubies

- Two distinct compositional zones identified in ca corundums from Forte à la Corne broadly high and low-Ca Concentrations in these zones indistinguishable from similar
- zones in SYNCOR
- With the exception of slightly more Fe and less Si, similar concentrations found in synthetic gem ruby BURM. Forte à la Corne corundums are likely to be contaminant
- introduced during the drilling process

Synthetic corundum (SYNCOR) manufactured commercially JUINA SAMPLES

- Juina sapphire inclusion exhibited much larger ratios of Ga and Ge to HFSE elements compared to otherwise similar corundums
- White corundum inclusions are particularly rich in Ge, exhibiting ~750 ppm for one analysis.
- Ruby inclusions are distinguished from synthetic rubies in particular by their homogeneity from otherwise similar natural corundums by over an order of magnitude higher Ni (20 100 ppm compared to < 2 ppm, Fig. 3).

Fig 3 Concentrations of trace elements from syngenetic inclusions of corundums in Juina diamonds

CONCLUSIONS

As corundum occurs syngenetically with diamond and its hardness and As containing occurs syngeneticary with infantone and its nationes and chemical stability lend it to survival in conditions more extreme than other diamond-associated minerals, potential exists for corundum to be used as a tool for diamond prospectivity. We have demonstrated with a small sample set that minor and trace element compositions of corundum smain sample set that minor and trace element compositions of corundum show strong set mat minor and trace element compositions of corundum show strong set minarities amongst corundums from related geological yet varied geographical settings. At the same time, identifiable differences occur between corundums from differing geological settings and in particular corundum inclusions in diamonds are shown to be distinguishable from other samples. In this case, all inclusion corundums; namely sapphire, ruby and white corundum are particularly identifiable by birth Siccensentrations 20, 100, npm; an order of magnitude greater by high Ni concentrations 20 - 100+ ppm; an order of magnitude greater than Ni in other samples.

As corundum is a common accessory phase in rocks from a range of geological settings, it is envisaged that corundums with a diamond association may be significantly outnumbered by those from non-diamond bearing country rocks. It is possible however that Ni concentrations may often be high enough to be detectable by rapid energy dispersive spectrometry (EDS) such as being developed the CSIRO and CDME to the off the formation of the set ICPMS. It is therefore envisaged that corundum could be used as a useful tool to compliment conventional indicator mineral techniques.

REFERENCES

Drummond, M.S., Wesolowski, D. and Allison, D.T. 1988. J. Petrol. 29, 869-897

869-897 Harley, S.L. 1993. Antarctic Science 5, 389-402 Harley, S.L. 1998. J. Metamorphic Geol. 16, 541-562 Harte, B. et al. 1999. Geochem. Soc. Spec. Publ. 6, 125-153 Hutchison, M.T., 1997. PhD Thesis of the University of Edinburgh, pp. 660 and CDRom

Hutchison, M.T., Cartigny, P. and Harris, J.W. 1999. Proc. VIIth International Kimberlite Conf, Volume I, Gurney, J.J. et al., eds. (Red Roof Design, Cape Town) 372-382

Hutchison, M.T., Hursthouse, M.B. and Light, M.E. 2001. Cont. Mineral. Petrol. 142, 119-126 Kerrich, R. et al. 1987 Contrib. Mineral. Petrol. 95, 481-498

Larrabee, D. M. 1969 Mineral and Water Resources, Bull. Arizona Bur. Mines 180, 336-337

Nijland, T.G. et al. 1993. Bull. Norges Geologiske Undersokelse 424, 51-63

Osanai, Y. et al., 1996 Tectonics and Metamorphism (SOUBUN, Japan) 113-123

Schreyer, W., Werding, G. and Abraham, K. 1981. J. Petrol. 22, 191-231 Snape, I. and Harley, S.L. 1996 Terra Antarctica 3, 23-38 Watt, G. et al. 1994 Mineral. Mag. 58, 490-492

TRIGON Geoservices

(chromite + Al <=> Cr-corundum + Cr)

Research School

of Earth Sciences

DEPARTMENT OF PLANETARY SCIENCES LUNAR AND PLANETARY LABORATORY -----The University of Arizona, Tucson AZ 85721